Midterm - Analysis of Several Variables (2023-24) Time: 2.5 hours.

Attempt all questions, giving proper explanations. You may quote any result proved in class without proof.

- 1. Give an example of a function $f : \mathbf{R}^2 \to \mathbf{R}$ that is not continuous at the origin but is continuous along every straight line through the origin. [4 marks]
- 2. Let $\mathbf{r} : \mathbf{R}^3 \to \mathbf{R}^3$ be defined as $\mathbf{r}(x, y, z) = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$, and let $r(x, y, z) = \|\mathbf{r}(x, y, z)\|$. Show that $\nabla(r^n) = nr^{n-2}\mathbf{r}$ for integers n. [3 marks]
- 3. Assume $f : \mathbf{R}^n \to \mathbf{R}$ is differentiable at each point of the ball $B(\mathbf{a}; \epsilon)$. If $f'(\mathbf{x}; \mathbf{y}) = 0$ for n independent vectors $\mathbf{y}_1, \dots, \mathbf{y}_n$ and for every \mathbf{x} in $B(\mathbf{a}; \epsilon)$, prove that f is constant on $B(\mathbf{a}; \epsilon)$. [4 marks]
- 4. Evaluate the directional derivative of $f(x, y, z) = x^2 + y^2 z^2$ at (3, 4, 5) along the curve of intersection of the two surfaces $2x^2 + 2y^2 z^2 = 25$ and $x^2 + y^2 = z^2$. [4 marks]
- 5. Find the points on the curve of intersection of the two surfaces

$$x^{2} - xy + y^{2} - z^{2} = 1$$
 and $x^{2} + y^{2} = 1$

which are nearest to the origin. [4 marks]

- 6. Compute $\int_C (x^2 2xy)dx + (y^2 2xy)dy$, where C is a path from (-2, 4) to (1, 1) along the parabola $y = x^2$. [4 marks]
- 7. Consider $\mathbf{f} : \mathbf{R}^2 \to \mathbf{R}^2$ given by $\mathbf{f}(x, y) = (x, y)$. Let $g(x, y) = \int_{C_1} \mathbf{f} \cdot d\mathbf{\alpha} + \int_{C_2} \mathbf{f} \cdot d\boldsymbol{\beta}$ where $\boldsymbol{\alpha}$ is the parametrisation of the straight line segment C_1 from (0,0) to (x,0), and $\boldsymbol{\beta}$ is the parametrisation of the straight line segment C_2 from (x,0) to (x,y). Find the gradient of g. [4 marks]
- 8. State Green's theorem. [3 marks]