Midterm - Analysis of Several Variables (2023-24)
 Time: 2.5 hours.

Attempt all questions, giving proper explanations.
You may quote any result proved in class without proof.

1. Give an example of a function $f: \mathbf{R}^{2} \rightarrow \mathbf{R}$ that is not continuous at the origin but is continuous along every straight line through the origin. [4 marks]
2. Let $\mathbf{r}: \mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$ be defined as $\mathbf{r}(x, y, z)=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$, and let $r(x, y, z)=\|\mathbf{r}(x, y, z)\|$. Show that $\nabla\left(r^{n}\right)=n r^{n-2} \mathbf{r}$ for integers n. [3 marks]
3. Assume $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ is differentiable at each point of the ball $B(\mathbf{a} ; \epsilon)$. If $f^{\prime}(\mathbf{x} ; \mathbf{y})=0$ for n independent vectors $\mathbf{y}_{1}, \cdots, \mathbf{y}_{n}$ and for every \mathbf{x} in $B(\mathbf{a} ; \epsilon)$, prove that f is constant on $B(\mathbf{a} ; \epsilon)$. [4 marks]
4. Evaluate the directional derivative of $f(x, y, z)=x^{2}+y^{2}-z^{2}$ at $(3,4,5)$ along the curve of intersection of the two surfaces $2 x^{2}+2 y^{2}-z^{2}=25$ and $x^{2}+y^{2}=z^{2}$. [4 marks]

5 . Find the points on the curve of intersection of the two surfaces

$$
x^{2}-x y+y^{2}-z^{2}=1 \text { and } x^{2}+y^{2}=1
$$

which are nearest to the origin. [4 marks]
6. Compute $\int_{C}\left(x^{2}-2 x y\right) d x+\left(y^{2}-2 x y\right) d y$, where C is a path from $(-2,4)$ to $(1,1)$ along the parabola $y=x^{2}$. [4 marks]
7. Consider $\mathbf{f}: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ given by $\mathbf{f}(x, y)=(x, y)$. Let $g(x, y)=\int_{C_{1}} \mathbf{f} \cdot d \boldsymbol{\alpha}+\int_{C_{2}} \mathbf{f} \cdot d \boldsymbol{\beta}$ where $\boldsymbol{\alpha}$ is the parametrisation of the straight line segment C_{1} from $(0,0)$ to $(x, 0)$, and $\boldsymbol{\beta}$ is the parametrisation of the straight line segment C_{2} from $(x, 0)$ to (x, y). Find the gradient of g. [4 marks]
8. State Green's theorem. [3 marks]

